
The Idiot’s Guide to the Zen of Likelihood in a Nutshell in
Seven Days for Dummies, Unleashed

A gentle introduction, for those of us who are small of brain, to the calculation
of the likelihood of molecular sequences

Peter G. Foster∗

July 28, 2001

This informal explanation is made for phylo-
geneticists who want to know what is inside the
black box, who want to know where the num-
bers come from. Perhaps you have given your-
selves a similar explanation for how parsimony
reconstruction works. You might have made up
some data for a few fictitious taxa, and tried
to fit them to a couple of different trees, and
satisfied yourself that one tree is more parsimo-
nious than another. Perhaps you then actually
typed in the data and fed them to paup or prot-
pars to check the tree lengths that you calcu-
lated against those calculated by the program.
Knowing that you and the program calculate the
same way is satisfying, and makes you feel better
about using the program for more sizable data.
It is to this sort of person that this explanation
is directed. Although simple demo parsimony
calculations can be done by hand with pen and
paper, simple demo likelihood calculations are
more involved, and the rationale more elusive.

The likelihood is probability of the data given
the model. Why not then just call it the prob-
ability? I suppose it was given the special new
name to emphasize that you are talking about
the probability of data, not the probability of
some abstract event happening, and also to em-
phasize that it is based on a model.

The data have already been collected. They

∗Department of Zoology, The Natural History Mu-
seum. email: p.foster@nhm.ac.uk

don’t change—they are a given. What you can
change, however, is the model. The model is the
picture of the way that you think that things
work. It is an idea, and so you can do whatever
you want with it.

Lets say that you flip a coin and get a head.
That’s the datum. Now if you think that its
a fair coin (the model), the datum will have a
probability of 1/2. But if your model is that
you have a two-headed coin, then your datum
will have a probability of 1. The lesson here is
that the model you have in mind can have a big
effect on the probability of the data.

For molecular evolution, the data are an
alignment of sequences, and the model in its
large sense is the tree that relates the sequences
plus the mechanism of molecular change. The
tree and the mechanism together are your idea
of the way that you think that things work. But
it is usual to separate the two parts of the model,
and call the tree part “the tree” and the mecha-
nism part “the model”. So the definition of the
model is somewhat loose. We will keep it that
way.

The mechanism part of the model—lets call it
the model, in keeping with our loose definition—
is an idea of the way you think that molecular
sequences change over time. Whereas the driv-
ing force behind morphological change is selec-
tion, it appears that molecules change, for the
most part, in a random way. By saying that we



think it is random doesn’t mean that we think
that everything proceeds equally—we may be
dealing with loaded dice.

Lets just speak of DNA models. I imagine
the model as having two parts: the composition
and the process. The composition is just the
proportion of the four nucleotides. For example
you might think that the four bases are in equal
proportions, or that there are twice as many a’s
as c’s. Or you might let the data decide for you,
and so if your sequences are g and c-rich, that
is what the composition part of the model gets.

The likelihood of a sequence

Lets do our first likelihood calculations. We
are going to calculate the probability of the nu-
cleotide “a”. Just one sequence, one nucleotide
long, with no tree involved. Since there is no
need for nucleotide change, we don’t need the
process part of the model, we just need the com-
position part. If our model is that everything is
100% a, then the likelihood of a is 1. If our
model is that everything is 100% c, then the
likelihood of a is zero. (This might be a tip-off
that the model does not fit the data well). If
our model is that a has a composition of 33%,
then the likelihood of a is 0.33.

Lets calculate the likelihood of a single se-
quence with two nucleotides, say “ac”. If the
model is the Jukes-Cantor model, which has a
composition of 1/4 for each base, then the like-
lihood will be 1/4 × 1/4 = 1/16. If the model
has a composition of 40% a and 10% c, the like-
lihood of the sequence will be 0.4× 0.1 = 0.04.

If you take the 16 possible dinucleotides and
calculate the likelihood for all of them, the sum
of those likelihoods should be 1. If you choose
to evaluate their likelihoods with the JC model,
its 1/16× 16, but it should be true of whatever
model you choose. This should always be true:
the sum of the likelihoods of all the different
data possibilities should be 1.

The likelihood of a one-branch tree

The other part of the model, the process part,
is needed if we have more than one sequence re-
lated by a tree. The process might be described
by sentences, or by equations, or by a matrix of
numbers, describing how the nucleotides change
from one to another. Lets use a very simple
alignment with only two sequences, each one
base long, an a in one sequence and a c in the
other. The sequences are related by a simple
tree, in this case a single branch. Lets evaluate
the likelihood of this tree under a model that
says that the composition is 1/4 a and 1/4 c,
and the process part of my model is “the prob-
ability of an a changing to a c, or vice versa,
is 0.4”. So, starting with a, the probability of
the sequence a is 1/4, and the probability of the
branch is 0.4. The probability of the two to-
gether, the tree, is 1/4 × 0.4 = 0.1. If we start
with the c we get the same, because the model
is reversible.

There are 16 possible changes from one nu-
cleotide to another (including remaining itself),
and we can organize the probabilities of those
changes in a 4 × 4 matrix, eg

P =









0.976 0.01 0.007 0.007
0.002 0.983 0.005 0.01
0.003 0.01 0.979 0.007
0.002 0.013 0.005 0.979









I’ll always use the convention that the order of
the bases is a, c, g, and t, alphabetical order.
So this says that the probability of an a chang-
ing to a c is 0.01, and the probability of a c
remaining a c is 0.983, Pt→g = 0.005 and so
on. Here the rows sum to 1, which says that
the probability of something happening is 1, a
comforting thought. The columns don’t sum to
anything in particular, however. The composi-
tion part of the model I’ll denote with a π, as in
π = [0.1, 0.4, 0.2, 0.3], with the same alphabeti-
cal ordering of the bases.

Armed with the model stated this way, you
can calculate the likelihood of a one branch tree
between two sequences. Lets say that we have

2



an alignment

c c a t
c c g t

the likelihood, going from the first to the second
sequence, will be

= πc Pc→c πc Pc→c πa Pa→g πt Pt→t

= 0.4 × 0.983 × 0.4 × 0.983

× 0.1 × 0.007 × 0.3 × 0.979

= 0.0000300

Different branch lengths

Of course the model above doesn’t take into ac-
count the possibility of different branch lengths.
We would think that for very short branch
lengths, the probability of a base changing to
another is low, and the probability of it stay-
ing the same is high, near one. The matrix P
above seems to describe a short branch. For
long branches, the probability of a base staying
the same would drop, and the probability that
it changes to something else would rise.

Lets say that the matrix above describes a
branch with a length of a Certain Evolutionary
Distance, or ced unit. So the likelihood that we
calculated was for 1 ced. What would the like-
lihood be for the same alignment with a branch
of 2 ced? We can get the probabilities for that
by multiplying the matrix by itself.









0.976 0.01 0.007 0.007
0.002 0.983 0.005 0.01
0.003 0.01 0.979 0.007
0.002 0.013 0.005 0.979









2

=









0.953 0.02 0.013 0.015
0.005 0.966 0.01 0.02
0.007 0.02 0.959 0.015
0.005 0.026 0.01 0.959









which gives a likelihood of 0.0000559. Similarly
for 3 ced the probability matrix is

P 3 =









0.93 0.029 0.019 0.022
0.007 0.949 0.015 0.029
0.01 0.029 0.939 0.022
0.007 0.038 0.015 0.94









which gives a likelihood of 0.0000782.

Notice that as the branch length increases the
probabilities on the diagonal are going down and
the probabilities off diagonal are going up. No-
tice also that the likelihood of the tree is going
up as we go from 1 to 3 ced units. What hap-
pens if we keep going?

branch length
(ced units) likelihood

1 0.0000300
2 0.0000559
3 0.0000782
10 0.000162
15 0.000177
20 0.000175
30 0.000152

branch length (ced)

lik
el

ih
oo

d

5 10 15 20 25 30
0.00015

0.00016

0.00017

0.00018

The likelihood rises to a maximum somewhere
between 10 and 20 ced units.

If you raise P to a very large power, π pops
out. So π was actually built-in to the probability
matrix P .

P 106
=









0.1 0.4 0.2 0.3
0.1 0.4 0.2 0.3
0.1 0.4 0.2 0.3
0.1 0.4 0.2 0.3









Rate matrices

If you want to calculate 54, you can get that by
exp(4 log(5)). In a similar way you can power
matrices by taking the matrix log to get the
rate matrix, multiplying the rate matrix by the
branch length, and then taking the matrix ex-
ponent of the product. This way you can get
non-integral exponents, and there are other ad-
vantages as well. If you go this route, you can
fully separate the composition from the process

3



(we saw above that the composition was built-in
to the probability matrices). Another good rea-
son to do this is so that you can easily express
your branch lengths in substitutions per site,
rather than arbitrary units such as ced units
used above, and furthermore you can get branch
lengths all the way from zero to infinity.

If we use our example P from above,

log P =









−0.0244 0.0101 0.0067 0.0076
0.0025 −0.0176 0.005 0.0101
0.0034 0.0101 −0.021 0.0076
0.0025 0.0134 0.005 −0.021









Here the sum of each row is zero. This matrix
corresponds to one ced, and if we take the ex-
ponential we recover the matrix corresponding
to one ced. What we want though, is a matrix
such that if we take its exponential we get a P
corresponding to one substitution per site. That
is done by scaling log P so that when the rows
of log P are multiplied by πrow the off-diagonal
elements sum to 1. The resulting scaled log P ,
which I will call Q, when its exponent is taken
gives a P corresponding to 1 substitution per
site. In general,

e ν = P (ν)

for branch length ν.
If we scale the log P above appropriately, by

a factor of 50, we get

Q =









−1.218 0.504 0.336 0.378
0.126 −0.882 0.252 0.504
0.168 0.504 −1.05 0.378
0.126 0.672 0.252 −1.05









Now if we multiply big Π, a diagonal matrix of
the π elements, by Q









0.1 0 0 0
0 0.4 0 0
0 0 0.2 0
0 0 0 0.3









· Q =









−0.122 0.05 0.034 0.038
0.05 −0.353 0.101 0.202
0.034 0.101 −0.21 0.076
0.038 0.202 0.076 −0.315









we get a matrix where the off-diagonal elements
sum to 1, and the diagonal elements sum to -1.

When this is the case, P ’s generated from this
Q will give branch lengths in substitutions per
site.

Separating the composition from the rates

If we divide the columns of Q by πcol, the com-
position is separated from the rates. Then you
can for example use exactly the same rate ma-
trix with different compositions. The rate ma-
trix R for the model that we have been using
is

R =









− 0.3 0.4 0.3
0.3 − 0.3 0.4
0.4 0.3 − 0.3
0.3 0.4 0.3 −









The diagonal elements don’t matter in this con-
text, so they are left out. The scale doesn’t
matter either. However, for a reversible model it
should be symmetrical. When PAUP expresses
a rate matrix with the lset rmatrix subcom-
mand, it uses 5 numbers (a → c, a → g, a →
t, c → g, c → t), scaling so that the sixth is 1.0.
PAUP would express that R by rmatrix=(1.0
1.33333 1.0 1.0 1.333333)

Interconversions between R, Q and P are
summarized here. In practice, you would hardly
ever go from P to Q, or from Q to R.

R

Q

P

Log, then scale so
that off-diagonals of
bigPi . Q sum to 1

Multiply by branch
length, then exp

Divide columns by
the composition

Multiply columns by
the composition, scale
so that off-diagonals
of bigPi . Q sum to 1

The maximum likelihood branch length in sub-
stitutions per site

The likelihood of the alignment ccat and ccgt at
various distances is

4



branch length (substitutions/site)

lik
el

ih
oo

d

0.25 0.3 0.35 0.4 0.45 0.5
0.00016

0.000165

0.00017

0.000175

0.00018

The maximum can be found numerically, by suc-
cessive approximation. It is at a branch length
of 0.330614, at a likelihood of 0.0001777.

Checking that PAUP* gets the right answer

#NEXUS

begin data;
dimensions ntax=2 nchar=4;
format datatype=dna;
matrix
A ccat
B ccgt
;

end;

begin paup;
set criterion=distance;
lset

nst=6
rmatrix = (1.0 1.33333 1.0

1.0 1.333333)
basefreq = (0.1 0.4 0.2)
;

dset distance=ml;
showdist; [got 0.33061]

end;

A two-branch tree

First, for the Q above, the corresponding P ma-
trices for 0.1, 0.2, and 0.3 substitutions per site
are

P (0.1) =









0.886 0.047 0.031 0.036
0.012 0.918 0.024 0.046
0.016 0.047 0.902 0.036
0.012 0.062 0.024 0.902









P (0.2) =









0.787 0.089 0.057 0.067
0.022 0.847 0.045 0.086
0.029 0.089 0.815 0.067
0.022 0.115 0.045 0.819









P (0.3) =









0.7 0.126 0.08 0.094
0.031 0.786 0.063 0.119
0.04 0.126 0.74 0.094
0.031 0.159 0.063 0.747









We have calculated the likelihood of a one
branch tree; lets move on to two. We will use the
same model, using P (0.1), P (0.2) and P (0.3)
that we just made, and the alignment from be-
fore. The tree has taxon A with sequence ccat
and taxon B with sequence ccgt arranged as

O
B

A
0.1

0.2

where O is the origin, the root, and the numbers
are the branch lengths. We will calculate the
likelihood three ways:

Way 1: From A to B in one step

This is just like a one-branch calculation. For
this we use the P (0.3) matrix, because it is a
distance of 0.3 from A to B. The likelihood is

= πc Pc→c πc Pc→c πa Pa→g πt Pt→t

= 0.4 × 0.786 × 0.4 × 0.786

× 0.1 × 0.08 × 0.3 × 0.747

= 0.000177

Way 2: From A to B in two steps

For the first part, from A to O, we use P (0.1).
We include the π values in this part, because we
are starting with A. For the first site in the A
sequence, c, it will be πc× . . . what? We don’t
know what the O sequence is at that site. It
is most probably a c, but it could be anything.
The probability for the branch from A to O is
the sum of the 4 possibilities.

5



= πc Pc→a + πc Pc→c + πc Pc→g + πc Pc→t

= 0.4 × 0.012 + 0.4 × 0.918

+ 0.4 × 0.024 + 0.4 × 0.046

= 0.4

= πc

When we add the second branch, from O to B,
into the calculation, we don’t need to put in
more π terms—we only need those once, at the
starting place. When we are summing over the
possibilities of what the unknown sequence at O
can be, whatever the unknown is at O for the
branch from A to O, it will be the same unknown
at O from O to B. So we are still summing over
only four possibilities. The calculation for the
first site will be as above, but now adding in the
branch from O to B using P (0.2), we have the
likelihood as the sum over the four possibilities

= πc P0.1,c→a P0.2,a→c + πc P0.1,c→c P0.2,c→c+

πc P0.1,c→g P0.2,g→c + πc P0.1,c→t P0.2,t→c

= 0.4 × 0.012 × 0.089 + 0.4 × 0.918 × 0.847

+ 0.4 × 0.024 × 0.089 + 0.4 × 0.046 × 0.115

= 0.3145

= πc P0.3,c→c

= 0.4 × 0.786

The likelihood for the other sites are calculated
in a similar way, and the product of the site
likelihoods is 0.000177.

Way 3: In two parts, starting from O

When we start with O, since we don’t know
what it is, we add up the probabilities of the
four possibilities. Since we are starting with O,
the π’s refer to that node. The likelihood for
the first position, c with c, is

= πa P0.1,a→c P0.2,a→c + πc P0.1,c→c P0.2,c→c+

πg P0.1,g→c P0.2,g→c + πt P0.1,t→c P0.2,t→c

= 0.1 × 0.047 × 0.089 + 0.4 × 0.918 × 0.847

+ 0.2 × 0.047 × 0.089 + 0.3 × 0.062 × 0.115

= 0.3145

What we are asking for is the likelihood of the
data, cc. We can easily calculate probabilities
of the four possible ways that that data might
have come into being. To get the likelihood of
the data at that site we sum the probabilities
of those possibilities. The product of the 4 site
likelihoods is 0.000177.

The two-part calculations look like a com-
plicated way to calculate something that could
have been done simply by straightening out
the two branches into one long one. Granted,
for a two branch tree this is true. However,
the next example uses a three branch tree,
and it could not be done using the branch-
straightening method—it needs the complicated
way.

One lesson for this part is that it doesn’t mat-
ter where you start, ie where you put the root:
you will still get the same answer. We put the
root at A and at O. You could put the root at B
or half-way between A and O, or anywhere, and
it will still work. This is Felsenstein’s “Pulley
Principle”.

A three branch tree

Lets use an alignment

A CCAT
B CCGT
C GCAT

arranged as

C

B

A
0.1

0.3

0.2

We root the tree at the internal node, and start
the likelihood calculations there, as in Way 3,
above. The likelihood of the first site is

6



= πa P0.1,a→c P0.2,a→c P0.3,a→g+

πc P0.1,c→c P0.2,c→c P0.3,c→g+

πg P0.1,g→c P0.2,g→c P0.3,g→g+

πt P0.1,t→c P0.2,t→c P0.3,t→g

= 0.1 × 0.047 × 0.089 × 0.08+

0.4 × 0.918 × 0.847 × 0.063+

0.2 × 0.047 × 0.089 × 0.74+

0.3 × 0.062 × 0.115 × 0.063

= 0.0204

If we calculate the other three sites in a similar
way, we get site likelihoods 0.245, 0.00368, and
0.166. If we multiply them together, we get a
likelihood for the tree of 3.04 × 10−6.

Check with PAUP*

#NEXUS

begin paup;
set storebrlens=yes;

end;

begin data;
dimensions ntax=3 nchar=4;
format datatype=dna;
matrix
A ccat
B ccgt
C gcat
;

end;

begin trees;
tree t1 = [&U] (A:0.1, B:0.2, C:0.3);

end;

begin paup;
set criterion=likelihood;
lset

userbrlens=yes
nst=6
rmatrix = (1.0 1.33333 1.0

1.0 1.333333)
basefreq = (0.1 0.4 0.2)
;

lscores /sitelikes=yes;

end;
[got site likes
0.020385 0.245121
0.003675 0.165724
-log like = 12.70253,
exp of which is 3.0434e-06 ]

Selection, and slow and fast sites

Noting that molecules change, for the most part,
in a random way is a good place to start. How-
ever, a purely neutral model has a problem: if
there is any natural selection it does not ade-
quately reflect reality. Only occasionally, such
as for example in pseudogenes, is the evolution
of sequences adequately described by a purely
neutral model. There is usually some selection
of some parts of molecular sequences. Some sites
are invariant, and the remaining sites vary to
varying degrees. A trivial example of an invari-
ant site is the start codon—it is under heavy
selection and so neutral evolution does not ap-
ply.

We can complicate our models to allow for
site rate heterogeneity, which is a way to deal
with selection. For observed constant sites, we
can say that there is a certain probability that
the data may have arisen by that site being an
invariable site, fixed in place by selection, or
the data may have arisen because it is a pos-
sibly variable site that by chance has not varied
yet. Although we could calculate the probabil-
ity of either, we can’t know which, and so we
sum the probabilities of the possibilities. This
summing is compounded on the summing that is
done over the 4 possible bases at internal nodes.
We can complicate matters further by saying in
our model that if it is a variable site, then it
might be evolving at a fast or slow rate, per-
haps described by a discreet gamma distribu-
tion. Again, the strategy is to sum over the
possibilities. Implementation details are left as
an exercise for the reader.

7



Appendix

Calculations here were done with Mathematica.
It has MatrixPower and MatrixExp functions,
but no MatrixLog function. An adequate stand-
in is

matrixLog[mat_] := Module[{dim},
dim = Dimensions[mat][[1]];
Sum[MatrixPower[mat -

IdentityMatrix[dim], i]/
(((-1)^(i + 1)) i), {i, 1, 50}]]

which uses a Taylor series. A working program
would use eigensystems to exponentiate or cal-
culate the logarithm of rate matrices.

The function for finding the maximum was
the Golden Ratio method coded into Mathemat-
ica.

8


